UG/6th Sem(H)/23/(CBCS)

2023

MATHEMATICS (Honours)

Paper Code: MATH6 - SEC-2

Full Marks: 32

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any four questions.

 $1 \times 4 = 4$

- 1. (a) Let X be a Poisson variate with parameter μ and P(X=0)=P(X=1), prove that $\mu=1$.
 - (b) Find the mean of the random variable X whose density function f(x) is given by

$$f(x) \begin{cases} e^{-x} ; 0 < x < \infty \\ 0 ; elsewhere \end{cases}$$

- (c) If the lines of regression of y on x and x on y are 3x+2y=26 and 6x+y=31 respectively. Find the correlation coefficient between x and y. 1
- (d) A die is thrown 108 times in succession. Find the expectation of the number of 'six' appeared.

P.T.O.

- (c) Find the probability that there may be 53 Sundays in a leap-year.
- (f) The coefficient of variation is 40 and the mean is 30; find the standard deviation.
- (g) Define scatter diagram.

1

Group B

Answer any two questions.

5×2=10

- 2. There are two identical boxes. The first box contains 5 white, 7 red balls and the second box contains 5 white, 5 red balls. One box is chosen at random and a ball is drawn from it. If the ball drawn is found to be white, calculate the probability that it is drawn from the first box.
- 3. Calculate the mean deviation from the mean of the following distribution —

Marks	0-10	10-20	20-30	30-40	40-50
Frequency	5	8	15	16	6

5

4. The scores of two batsmen, A and B, in ten innings during a certain season, are as under —

A: 32 28 47 63 71 39 10 60 96 14

B: 19 31 48 53 67 90 10 62 40 80

Find which of the batsman is more consistent in scoring.

5. Let X be a Poisson variate with parameter μ . Show that $P(X \le n) = \frac{1}{n!} \int_0^{\alpha} e^{-x} x^n dx$, where n is any positive integer.

Group - C

Answer any two questions:

 $9 \times 2 = 18$

6. (a) A coin is tossed (m + n) times (m > n). Show that the probability of getting at least m consecutive

heads is
$$\frac{n+2}{2^n+1}$$
.

(b) The I.Q. of students of a class is normally distributed with parameter m = 100 and $\sigma = 10$. If the total number of students in the class is 700, then find the number of students who have

$$I.Q. \ge 115$$
. Given that $\frac{1}{2\Pi} \int_{-\alpha}^{1.5} e^{\frac{-x^2}{2}} dx = 0.9332$.

4

7. (a) Find out the skewness and Kurtosis of the series by the method of moments:

Measurement	0-10	10-20	20-30	30-40
Frequency	1	3	4	2

Using the method of least square, fit a curve of the $y = a + bx^2$ to the following data — 4

х	0	1	2	3
у	1	6.	20	48

8. (a) For the Binomial (n, p) distribution, prove that

$$\mu_{r+1} = p(p-1) \left[nr \ \mu_{r-1} + \frac{d\mu r}{dp} \right]$$
 5

where μ_r is the rth central moment of the distribution.

(b) If the random variables X and Y are connected by the linear relation 2x+3y+4=0. Show that $\rho(x,y)=-1$.

(24th July, 2023) (1 pm - 3 pm)

UG/6th Sem(H)/23/(CBCS)

2023

MATHEMATICS (Honours)

Paper Code: MATH6 - DC-13

Full Marks: 32

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any four questions:

 $1 \times 4 = 4$

- (a) When a feasible solution of an L.P.P called an optimal solution?
- (b) State fundamental theorem of L.P.P.
- How many basic solutions are possible in a system of m-equations and n-unknowns? $(n \ge m)$
- (d) Define a convex set.
- (e) State why an assignment problem is not an LPP.
- Find the extreme points, if any, of the following set:

$$S = \{(x, y) : x^2 + y^2 \le 25\}$$

g Define saddle point.

P.T.O.

Group - B

Answer any two questions:

5×2=10

- 2. Show that intersection of two convex sets is also a convex set.
- 3. Solve the following LPP graphically

Maximize
$$Z = 4x + 2y$$

Subject to
$$3x + y \ge 27$$

 $-x - y \le -21$
 $x + 2y \ge 30, x, y \ge 0$

- 4. Prove that the dual of the dual of a given primal is primal.
- 5. Solve the following 2 × 4 game problem graphically:

Group - C

Answer any two questions:

 $9 \times 2 = 18$

Find the solution of the following transportation problem:

(3)

	D_1	D_2	D_3	D_4	ai
01	10	20	5	7	10
O ₂	13	9	12	8	20
O ₃	4	15	7	9	30
O ₄	14	7	1	0	40
O ₅	3	12	5	19	50
bj	60	60	20	10	

Examine whether the problem has an alternative optimal solution. 7+2

7. (a) Solve the following L.P.P by simplex method. 5

Maximize
$$Z = 7x_1 + 5x_2$$

Subject to
$$x_1 + 2x_2 \le 6$$

 $4x_1 + 3x_2 \le 12$

$$x_1, x_2 \geq 0$$
.

(b) Solve the following assignment problem

	016
4	¥ //3
	-

	I	II	Ш	IV
Α	8	26	17	11
В	13	28	4	26
С	38	19	18	15
D	19	26	24	10

8. (a) Use dominance property to solve the following problem of game 7

		В			
	٠	B ₁	B ₂	B ₃	B ₄
	A ₁	4 -2 2	2	3	2 4 5
A	A ₂	-2	4	6	4
	A_3	2.	1 ,	3	5

(b) Explain the concepts of pure strategies.

Taper Code: MAINO - DSE-3(A), 3(B) & 3(C)

Full Marks: 32

Time: Two Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Paper Code : DSE-3(A)

(Point Set Topology)

Group - A

1. Answer any four questions:

1×4=4

- (a) Let R_a and R_r denote respectively the usual topology and the lower limit topology on R. Is the identify function f:R_a → R_r continuous?
- (b) Write down a basis for the discrete topology on a non-empty set x.
- (c) Find all the limit points of $\{b, c\}$ in the topological space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{c\}\}$.
- (d) Find if there exist any set which is neither open nor

P.T.O.

(2)

closed in the topological space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}.$

- (e) State continuum hypothesis.
- (f) Give example of a path connected topological space.
- (g) State the Baire category theorem.

Group - B

Answer any two questions:

5×2=10

•

- 2. State and prove Schroeder-Bernstein theorem.
- 3. Let Y be a subspace of a topological space X and A be a subset of Y. Let \overline{A} denote the closure of A in X. Show that the closure of A in Y is $\overline{A} \cap Y$.
 - subspace of a topological space, that have common is connected.

- (f) Give example of a path connected topological space.
- (g) State the Baire category theorem.

Group - B

Answer any two questions:

5×2=10

- 2. State and prove Schroeder-Bernstein theorem.
- Let Y be a subspace of a topological space X and A
 be a subset of Y. Let A denote the closure of A in X.
 Show that the closure of A in Y is A∩Y.
- Prove that the union of a collection of connected subspace of a topological space, that have a point in common is connected.
- Prove that closure of a set is the smallest closed set containing the set.

Group - C

Answer any two questions:

 $9 \times 2 = 18$

 (a) State Zom's lemma. Hence prove the Hausdroff Maximal principle.

- (b) Let B be a basis for a topology τ on X, prove that τ equals to the collection of all unions of elements of B.
- 7. (a) If \mathcal{B} and \mathcal{C} are basis of two topologies on X and Y respectively, then show that the collection $\mathcal{D} = \{B \times C : B \in \mathcal{B}, C \in \mathcal{C}\} \text{ is a basis for the topology on } X \times Y.$
 - (b) Prove that image of a compact set under a continuous mapping is compact.
- 8. (a) Let X = {1,2,3} and Y = {a,b,c}. Let τ₁ and τ₂ be topologies on X and Y respectively, where τ₁ = {φ, X,{1}} and τ₂ = {φ, Y,{a}, {a,b}}.
 A map f is defined by 1→a,2→a,3→b. Examine whether the mapping f is open, closed, continuous.
 - (b) State and prove the Ascoli-Arzela theorem. 4